B
    eJd_               
   @   s   d Z ddlZddlmZ ejejejejej	ej
ejejejejf
Zdd eD ZejdejdejdejdiZee e Zedd	 e D  ed
ddeej eej d dddZdd ZdddZdS )zVendored code from scikit-image in order to limit the number of dependencies
Extracted from scikit-image/skimage/exposure/exposure.py
    N)warnc             C   s&   i | ]}t |jt |jf|qS  )npZiinfominmax).0tr   r   M/var/www/html/venv/lib/python3.7/site-packages/plotly/express/imshow_utils.py
<dictcomp>   s    r
   )FT)   c             c   s   | ]\}}|j |fV  qd S )N)__name__)r   dZlimitsr   r   r	   	<genexpr>    s    r   )r   i  )r   i  )r   i?  )Zuint10Zuint12Zuint14boolfloatimageFc             C   s\   |dkr| j j}|dkr.t| }t| }n&|tkrLt| \}}|rTd}n|\}}||fS )af  Return image intensity range (min, max) based on desired value type.

    Parameters
    ----------
    image : array
        Input image.
    range_values : str or 2-tuple, optional
        The image intensity range is configured by this parameter.
        The possible values for this parameter are enumerated below.

        'image'
            Return image min/max as the range.
        'dtype'
            Return min/max of the image's dtype as the range.
        dtype-name
            Return intensity range based on desired `dtype`. Must be valid key
            in `DTYPE_RANGE`. Note: `image` is ignored for this range type.
        2-tuple
            Return `range_values` as min/max intensities. Note that there's no
            reason to use this function if you just want to specify the
            intensity range explicitly. This option is included for functions
            that use `intensity_range` to support all desired range types.

    clip_negative : bool, optional
        If True, clip the negative range (i.e. return 0 for min intensity)
        even if the image dtype allows negative values.
    dtyper   r   )r   typer   r   r   DTYPE_RANGE)r   Zrange_valuesclip_negativeZi_minZi_maxr   r   r	   intensity_range,   s    
r   c             C   sl   t | tttjgkrtjS t | t kr*| S | tkrXyt| j S  tk
rT   tj	S X nt
dt|  dS )aO  Determine the output dtype for rescale_intensity.

    The dtype is determined according to the following rules:
    - if ``dtype_or_range`` is a dtype, that is the output dtype.
    - if ``dtype_or_range`` is a dtype string, that is the dtype used, unless
      it is not a NumPy data type (e.g. 'uint12' for 12-bit unsigned integers),
      in which case the data type that can contain it will be used
      (e.g. uint16 in this case).
    - if ``dtype_or_range`` is a pair of values, the output data type will be
      float.

    Parameters
    ----------
    dtype_or_range : type, string, or 2-tuple of int/float
        The desired range for the output, expressed as either a NumPy dtype or
        as a (min, max) pair of numbers.

    Returns
    -------
    out_dtype : type
        The data type appropriate for the desired output.
    z]Incorrect value for out_range, should be a valid image data type or a pair of values, got %s.N)r   listtupler   ZndarrayZfloat_r   r   	TypeErrorZuint16
ValueErrorstr)Zdtype_or_ranger   r   r	   _output_dtypeW   s    
r   r   c             C   s   |dkrt | jj}nt |}ttt| |\}}ttt| ||dkd\}}tt||||grrt	ddd t
| ||} ||kr| | ||  } tj| ||  | |dS t
| |||S dS )	a  Return image after stretching or shrinking its intensity levels.

    The desired intensity range of the input and output, `in_range` and
    `out_range` respectively, are used to stretch or shrink the intensity range
    of the input image. See examples below.

    Parameters
    ----------
    image : array
        Image array.
    in_range, out_range : str or 2-tuple, optional
        Min and max intensity values of input and output image.
        The possible values for this parameter are enumerated below.

        'image'
            Use image min/max as the intensity range.
        'dtype'
            Use min/max of the image's dtype as the intensity range.
        dtype-name
            Use intensity range based on desired `dtype`. Must be valid key
            in `DTYPE_RANGE`.
        2-tuple
            Use `range_values` as explicit min/max intensities.

    Returns
    -------
    out : array
        Image array after rescaling its intensity. This image is the same dtype
        as the input image.

    Notes
    -----
    .. versionchanged:: 0.17
        The dtype of the output array has changed to match the output dtype, or
        float if the output range is specified by a pair of floats.

    See Also
    --------
    equalize_hist

    Examples
    --------
    By default, the min/max intensities of the input image are stretched to
    the limits allowed by the image's dtype, since `in_range` defaults to
    'image' and `out_range` defaults to 'dtype':

    >>> image = np.array([51, 102, 153], dtype=np.uint8)
    >>> rescale_intensity(image)
    array([  0, 127, 255], dtype=uint8)

    It's easy to accidentally convert an image dtype from uint8 to float:

    >>> 1.0 * image
    array([ 51., 102., 153.])

    Use `rescale_intensity` to rescale to the proper range for float dtypes:

    >>> image_float = 1.0 * image
    >>> rescale_intensity(image_float)
    array([0. , 0.5, 1. ])

    To maintain the low contrast of the original, use the `in_range` parameter:

    >>> rescale_intensity(image_float, in_range=(0, 255))
    array([0.2, 0.4, 0.6])

    If the min/max value of `in_range` is more/less than the min/max image
    intensity, then the intensity levels are clipped:

    >>> rescale_intensity(image_float, in_range=(0, 102))
    array([0.5, 1. , 1. ])

    If you have an image with signed integers but want to rescale the image to
    just the positive range, use the `out_range` parameter. In that case, the
    output dtype will be float:

    >>> image = np.array([-10, 0, 10], dtype=np.int8)
    >>> rescale_intensity(image, out_range=(0, 127))
    array([  0. ,  63.5, 127. ])

    To get the desired range with a specific dtype, use ``.astype()``:

    >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8)
    array([  0,  63, 127], dtype=int8)

    If the input image is constant, the output will be clipped directly to the
    output range:
    >>> image = np.array([130, 130, 130], dtype=np.int32)
    >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32)
    array([127, 127, 127], dtype=int32)
    )r   r   r   )r   zOne or more intensity levels are NaN. Rescaling will broadcast NaN to the full image. Provide intensity levels yourself to avoid this. E.g. with np.nanmin(image), np.nanmax(image).   )
stacklevel)r   N)r   r   r   mapr   r   r   anyisnanr   ZclipZasarrayZastype)r   Zin_rangeZ	out_rangeZ	out_dtypeZiminZimaxZominZomaxr   r   r	   rescale_intensity   s    \r#   )r   F)r   r   )__doc__numpyr   warningsr   byteZubyteshortZushortZintcZuintcint_ZuintZlonglongZ	ulonglongZ_integer_typesZ_integer_rangesZbool_Zfloat16Zfloat32Zfloat64Zdtype_rangeupdatecopyr   itemsr   r   r#   r   r   r   r	   <module>   s:   


+,