B
    0d#  γ               @   sT   d dl mZ d dlZd dlmZ d dlmZmZ ddl	m
Z
mZ dgZdd
dZdS )ι    )ΪIterableN)Ϊ_asarray_validated)Ϊ
block_diagΪLinAlgErrorι   )Ϊ_compute_lworkΪget_lapack_funcsΪcossinFTc       -      C   s  |s
|r|dkrdnt |}|dkr*dnt |}t| dd} tj| j sZtd | j‘| jd }||kst|dkrtd || jd ‘||ks|dkr°td || jd ‘| d|d|f | d||df | |dd|f | |d|df f\}}	}
}n(t| ts td	nt	| d
kr@td t	| ‘dd | D \}}	}
}xFt
ddddg||	|
|gD ](\}}|jd dkrrtd |‘qrW |j\}}|j\}}|	j||fkrΨtd ||f|	j‘|
j||fkrώtd ||f|
j‘|| || kr(td || || ‘|| }tdd ||	|
|gD }|rTdnd}t||d g||	|
|g\}}t||||d}|r|d |d dnd|i}|f ||	|
|||||d|d
|^ }}}}}}}|j| }|dk r td | |‘|dkrtd  ||‘|r2||f|||ffS t||}t||}t t |‘‘} t t |‘‘}!t|||| || }"t|||" }#t||| |" }$t|| ||" }%t|| || |" }&tjt |#|$|%|&|"g‘|jd!}'tj||f|jd!}(|'d|#d|#f |(d|#d|#f< |#|" })|#|" |$ }*|#|% |& d"|"  }+|#|% |& d"|"  |$ },|rv|'d|$d|$f n|'d|$d|$f  |(|)|*|+|,f< ||& |" })||& |" |%
  }*|#|" }+|#|" |% },|rκ|'d|%d|%f  n|'d|%d|%f |(|)|*|+|,f< |'d|&d|&f |(|||& |||& f< | |(|#|#|" |#|#|" f< | |(||& ||& |" |"|% |& d"|" |% |& f< |#})|#|" }*|#|% |& |" }+|#|% |& d"|"  },|rΔ|!n|! |(|)|*|+|,f< |rζ|! n|!|(||& ||& |" |#|#|" f< ||(|fS )#u’  
    Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.

    X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following
    where upper left block has the shape of ``(p, q)``::

                                   β                   β
                                   β I  0  0 β 0  0  0 β
        β           β   β         ββ 0  C  0 β 0 -S  0 ββ         β*
        β X11 β X12 β   β U1 β    ββ 0  0  0 β 0  0 -I ββ V1 β    β
        β βββββΌββββ β = ββββββΌββββββββββββββββΌββββββββββββββββΌβββββ
        β X21 β X22 β   β    β U2 ββ 0  0  0 β I  0  0 ββ    β V2 β
        β           β   β         ββ 0  S  0 β 0  C  0 ββ         β
                                   β 0  0  I β 0  0  0 β
                                   β                   β

    ``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of
    dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)``
    respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal
    matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``.

    Moreover, the rank of the identity matrices are ``min(p, q) - r``,
    ``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r``
    respectively.

    X can be supplied either by itself and block specifications p, q or its
    subblocks in an iterable from which the shapes would be derived. See the
    examples below.

    Parameters
    ----------
    X : array_like, iterable
        complex unitary or real orthogonal matrix to be decomposed, or iterable
        of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are
        omitted.
    p : int, optional
        Number of rows of the upper left block ``X11``, used only when X is
        given as an array.
    q : int, optional
        Number of columns of the upper left block ``X11``, used only when X is
        given as an array.
    separate : bool, optional
        if ``True``, the low level components are returned instead of the
        matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of
        ``u``, ``cs``, ``vh``.
    swap_sign : bool, optional
        if ``True``, the ``-S``, ``-I`` block will be the bottom left,
        otherwise (by default) they will be in the upper right block.
    compute_u : bool, optional
        if ``False``, ``u`` won't be computed and an empty array is returned.
    compute_vh : bool, optional
        if ``False``, ``vh`` won't be computed and an empty array is returned.

    Returns
    -------
    u : ndarray
        When ``compute_u=True``, contains the block diagonal orthogonal/unitary
        matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2``
        (``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``,
        this contains the tuple of ``(U1, U2)``.
    cs : ndarray
        The cosine-sine factor with the structure described above.
         If ``separate=True``, this contains the ``theta`` array containing the
         angles in radians.
    vh : ndarray
        When ``compute_vh=True`, contains the block diagonal orthogonal/unitary
        matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H``
        (``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``,
        this contains the tuple of ``(V1H, V2H)``.

    Examples
    --------
    >>> from scipy.linalg import cossin
    >>> from scipy.stats import unitary_group
    >>> x = unitary_group.rvs(4)
    >>> u, cs, vdh = cossin(x, p=2, q=2)
    >>> np.allclose(x, u @ cs @ vdh)
    True

    Same can be entered via subblocks without the need of ``p`` and ``q``. Also
    let's skip the computation of ``u``

    >>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]),
    ...                      compute_u=False)
    >>> print(ue)
    []
    >>> np.allclose(x, u @ cs @ vdh)
    True

    References
    ----------
    .. [1] : Brian D. Sutton. Computing the complete CS decomposition. Numer.
           Algorithms, 50(1):33-65, 2009.

    Nr   T)Zcheck_finitez?Cosine Sine decomposition only supports square matrices, got {}r   zinvalid p={}, 0<p<{} must holdzinvalid q={}, 0<q<{} must holdzJWhen p and q are None, X must be an Iterable containing the subblocks of Xι   zAWhen p and q are None, exactly four arrays should be in X, got {}c             S   s   g | ]}t  |‘qS © )ΪnpZ
atleast_2d)Ϊ.0Ϊxr   r   ϊM/var/www/html/venv/lib/python3.7/site-packages/scipy/linalg/_decomp_cossin.pyϊ
<listcomp>   s    zcossin.<locals>.<listcomp>Ϊx11Ϊx12Ϊx21Ϊx22z{} can't be emptyz*Invalid x12 dimensions: desired {}, got {}z*Invalid x21 dimensions: desired {}, got {}zThe subblocks have compatible sizes but don't form a square array (instead they form a {}x{} array). This might be due to missing p, q arguments.c             S   s   g | ]}t  |‘qS r   )r   Ziscomplexobj)r   r   r   r   r   r      s    ZuncsdZorcsdZ_lwork)ΪmΪpΪq)ΪlworkZlrworkr   F)
r   r   r   r   Z
compute_u1Z
compute_u2Zcompute_v1tZcompute_v2tZtransZsignsz+illegal value in argument {} of internal {}z{} did not converge: {})Ϊdtypeι   )Ϊintr   r   ΪequalΪshapeΪ
ValueErrorΪformatΪ
isinstancer   ΪlenΪzipΪanyr   r   Ϊtypecoder   r   ZdiagΪcosΪsinΪminΪeyeΪmaxr   Zzeros)-ΪXr   r   ZseparateZ	swap_signZ	compute_uZ
compute_vhr   r   r   r   r   ΪnameΪblockZmmpZmmqZcplxZdriverΪcsdZ	csd_lworkr   Z
lwork_argsΪ_ΪthetaΪu1Ϊu2Zv1hZv2hΪinfoΪmethod_nameΪUZVDHΪcΪsΪrZn11Zn12Zn21Zn22ZIdΪCSZxsZxeZysZyer   r   r   r	      sΆ    b


X






 $@@,4 0)NNFFTT)Ϊcollections.abcr   Ϊnumpyr   Zscipy._lib._utilr   Zscipy.linalgr   r   Zlapackr   r   Ϊ__all__r	   r   r   r   r   Ϊ<module>   s    