B
    W0d                 @   sP  d Z dZg ZxPeD ]HZyee W q ek
rX Z zee de  W ddZ[X Y qX qW ertedde [[[ddl	m
ZmZ yddlmZmZmZ W nD ek
r Z z&eed	d
Zede deW ddZ[X Y nX ddlmZmZmZmZmZmZ ddlZ ddl!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYmZZZm[Z[ ddl\m]Z] ddl^m_Z_ ddl`maZa ddlbmcZc ddldmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZnmoZompZpmqZq ddlrZ ddlsmtZt ddlumvZvmwZwmxZxmyZymzZzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZ ddlmZ ddlZ ddlZ ddlmZ e Zeded ZedZ[[dd ZdZdS )restructuredtext)numpyZpytzZdateutilz: Nz(Unable to import required dependencies:

    )np_version_under1p18is_numpy_dev)	hashtablelibtslibzcannot import name  zC extension: z not built. If you want to import pandas from the source directory, you may need to run 'python setup.py build_ext --force' to build the C extensions first.)
get_option
set_optionreset_optiondescribe_optionoption_contextoptions):	Int8Dtype
Int16Dtype
Int32Dtype
Int64Dtype
UInt8DtypeUInt16DtypeUInt32DtypeUInt64DtypeFloat32DtypeFloat64DtypeCategoricalDtypePeriodDtypeIntervalDtypeDatetimeTZDtypeStringDtypeBooleanDtypeNAisnaisnullnotnanotnullIndexCategoricalIndex
Int64IndexUInt64Index
RangeIndexFloat64Index
MultiIndexIntervalIndexTimedeltaIndexDatetimeIndexPeriodIndex
IndexSliceNaTPeriodperiod_range	Timedeltatimedelta_range	Timestamp
date_rangebdate_rangeIntervalinterval_range
DateOffset
to_numericto_datetimeto_timedeltaFlagsGrouper	factorizeuniquevalue_countsNamedAggarrayCategoricalset_eng_float_formatSeries	DataFrame)SparseDtype)
infer_freq)offsets)eval)concatlreshapemeltwide_to_longmerge
merge_asofmerge_orderedcrosstabpivotpivot_tableget_dummiescutqcut)show_versions)	ExcelFileExcelWriter
read_excelread_csvread_fwf
read_tableread_pickle	to_pickleHDFStoreread_hdfread_sqlread_sql_queryread_sql_tableread_clipboardread_parquetread_orcread_featherread_gbq	read_htmlread_xml	read_json
read_stataread_sas	read_spss)_json_normalize)test)get_versionszclosest-tagversionzfull-revisionidc             C   s   dd l }| dkr0|jdtdd ddlm} |S | dkrT|jdtdd dd l}|S | d	kr|jd
|  dtdd t| di S | dkr|jdtdd ddlm} |S td|  dd S )Nr   datetimezThe pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime module instead.   )
stacklevel)ry   npzuThe pandas.np module is deprecated and will be removed from pandas in a future version. Import numpy directly instead>   SparseDataFrameSparseSerieszThe zq class is removed from pandas. Accessing it from the top-level namespace will also be removed in the next version SparseArrayzThe pandas.SparseArray class is deprecated and will be removed from pandas in a future version. Use pandas.arrays.SparseArray instead.)r   z"module 'pandas' has no attribute '')	warningswarnFutureWarningry   r   typepandas.core.arrays.sparser   AttributeError)namer   dtr|   Z_SparseArrayr   r   A/var/www/html/venv/lib/python3.7/site-packages/pandas/__init__.py__getattr__   s:    
r   a  
pandas - a powerful data analysis and manipulation library for Python
=====================================================================

**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

  - Easy handling of missing data in floating point as well as non-floating
    point data.
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations.
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data.
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects.
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets.
  - Intuitive merging and joining data sets.
  - Flexible reshaping and pivoting of data sets.
  - Hierarchical labeling of axes (possible to have multiple labels per tick).
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format.
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, date shifting and lagging.
)__docformat__Zhard_dependenciesZmissing_dependencies
dependency
__import__ImportErroreappendjoinZpandas.compatr   Z_np_version_under1p18r   Z_is_numpy_devZpandas._libsr   Z
_hashtabler   Z_libr	   Z_tslibstrreplacemoduleZpandas._configr   r   r   r   r   r   Zpandas.core.config_initZpandasZpandas.core.apir   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   r   rK   Zpandas.tseries.apirL   Zpandas.tseriesrM   Zpandas.core.computation.apirN   Zpandas.core.reshape.apirO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   Z
pandas.apiZpandas.util._print_versionsr\   Zpandas.io.apir]   r^   r_   r`   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   rt   Zpandas.io.jsonru   Zjson_normalizeZpandas.util._testerrv   Zpandas.testingZpandas.arraysZpandas._versionrw   vget__version__Z__git_version__r   __doc__r   r   r   r   <module>   sR   
* 
C<h!
^