B
    Y0d-B                 @  s  d dl mZ d dlmZmZ d dlZd dlmZmZm	Z	 d dl
Zd dlmZ d dlmZ d dlmZ d dlZd dlmZ d	d	d
ddZd,d	d	dddddZdd	dd	ddddZdd	ddddZd-dd	dddd Zd.dd"d#d$d$d	d	dd%d&	d'd(Zed)ed*d+ZdS )/    )annotations)abcdefaultdictN)AnyDefaultDictIterable)convert_json_to_lines)Scalar)	deprecate)	DataFramestr)sreturnc             C  s0   | d dks| d dkr| S | dd } t | S )zJ
    Helper function that converts JSON lists to line delimited JSON.
    r   []   )r   )r    r   K/var/www/html/venv/lib/python3.7/site-packages/pandas/io/json/_normalize.pyconvert_to_line_delimits   s    r    .intz
int | None)prefixseplevel	max_levelc          
   C  s   d}t | tr| g} d}g }x| D ]}t|}x| D ]\}	}
t |	tsTt|	}	|dkrb|	}n|| |	 }t |
tr|dk	r||kr|dkr:||	}
|
||< q:q:||	}
|t|
|||d | q:W |	| q"W |r|d S |S )a  
    A simplified json_normalize

    Converts a nested dict into a flat dict ("record"), unlike json_normalize,
    it does not attempt to extract a subset of the data.

    Parameters
    ----------
    ds : dict or list of dicts
    prefix: the prefix, optional, default: ""
    sep : str, default '.'
        Nested records will generate names separated by sep,
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
    level: int, optional, default: 0
        The number of levels in the json string.

    max_level: int, optional, default: None
        The max depth to normalize.

        .. versionadded:: 0.25.0

    Returns
    -------
    d - dict or list of dicts, matching `ds`

    Examples
    --------
    >>> nested_to_record(
    ...     dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2))
    ... )
    {'flat1': 1, 'dict1.c': 1, 'dict1.d': 2, 'nested.e.c': 1, 'nested.e.d': 2, 'nested.d': 2}
    FTr   Nr   )

isinstancedictcopydeepcopyitemsr   popupdatenested_to_recordappend)dsr   r   r   r   Z	singletonZnew_dsdZnew_dkvZnewkeyr   r   r   r$   '   s2    .






r$   r   zdict[str, Any])data
key_stringnormalized_dict	separatorr   c             C  sr   t | trfxb|  D ]L\}}| | | }t||t|d  |krH|n|t|d ||d qW n| ||< |S )a3  
    Main recursive function
    Designed for the most basic use case of pd.json_normalize(data)
    intended as a performance improvement, see #15621

    Parameters
    ----------
    data : Any
        Type dependent on types contained within nested Json
    key_string : str
        New key (with separator(s) in) for data
    normalized_dict : dict
        The new normalized/flattened Json dict
    separator : str, default '.'
        Nested records will generate names separated by sep,
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
    r   N)r*   r+   r,   r-   )r   r   r!   _normalise_jsonlen)r*   r+   r,   r-   keyvalueZnew_keyr   r   r   r.   z   s    
r.   )r*   r-   r   c             C  s8   dd |   D }tdd |   D di |d}||S )aw  
    Order the top level keys and then recursively go to depth

    Parameters
    ----------
    data : dict or list of dicts
    separator : str, default '.'
        Nested records will generate names separated by sep,
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar

    Returns
    -------
    dict or list of dicts, matching `normalised_json_object`
    c             S  s    i | ]\}}t |ts||qS r   )r   r   ).0r(   r)   r   r   r   
<dictcomp>   s    z+_normalise_json_ordered.<locals>.<dictcomp>c             S  s    i | ]\}}t |tr||qS r   )r   r   )r2   r(   r)   r   r   r   r3      s    r   )r*   r+   r,   r-   )r!   r.   )r*   r-   Z	top_dict_Znested_dict_r   r   r   _normalise_json_ordered   s    r4   zdict | list[dict]zdict | list[dict] | Any)r&   r   r   c               s@   i }t | trt|  d}n t | tr< fdd| D }|S |S )a  
    A optimized basic json_normalize

    Converts a nested dict into a flat dict ("record"), unlike
    json_normalize and nested_to_record it doesn't do anything clever.
    But for the most basic use cases it enhances performance.
    E.g. pd.json_normalize(data)

    Parameters
    ----------
    ds : dict or list of dicts
    sep : str, default '.'
        Nested records will generate names separated by sep,
        e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar

    Returns
    -------
    frame : DataFrame
    d - dict or list of dicts, matching `normalised_json_object`

    Examples
    --------
    >>> _simple_json_normalize(
    ...     {
    ...         "flat1": 1,
    ...         "dict1": {"c": 1, "d": 2},
    ...         "nested": {"e": {"c": 1, "d": 2}, "d": 2},
    ...     }
    ... )
    {'flat1': 1, 'dict1.c': 1, 'dict1.d': 2, 'nested.e.c': 1, 'nested.e.d': 2, 'nested.d': 2}

    )r*   r-   c               s   g | ]}t | d qS ))r   )_simple_json_normalize)r2   row)r   r   r   
<listcomp>   s    z*_simple_json_normalize.<locals>.<listcomp>)r   r   r4   list)r&   r   Znormalised_json_objectZnormalised_json_listr   )r   r   r5      s    +

r5   raisezstr | list | Nonez"str | list[str | list[str]] | Nonez
str | Noner   )	r*   record_pathmetameta_prefixrecord_prefixerrorsr   r   r   c               s  ddddddddddfdd	t | tr<| s<t S t | trN| g} n$t | tjrnt | tsnt| } nt|d
kr|d
kr|d
kr	d
krd
krtt| dS |d
krt	dd | D rt
| d} t| S t |ts|g}|d
krg }nt |ts
|g}dd |D  g 
g ttfdd D d 
fdd	| |i dd t
}	d
k	r|j	fddd}xZ D ]N\}	}
|d
k	r||	 }	|	|krtd|	 dtj|
td||	< qW |S )a  
    Normalize semi-structured JSON data into a flat table.

    Parameters
    ----------
    data : dict or list of dicts
        Unserialized JSON objects.
    record_path : str or list of str, default None
        Path in each object to list of records. If not passed, data will be
        assumed to be an array of records.
    meta : list of paths (str or list of str), default None
        Fields to use as metadata for each record in resulting table.
    meta_prefix : str, default None
        If True, prefix records with dotted (?) path, e.g. foo.bar.field if
        meta is ['foo', 'bar'].
    record_prefix : str, default None
        If True, prefix records with dotted (?) path, e.g. foo.bar.field if
        path to records is ['foo', 'bar'].
    errors : {'raise', 'ignore'}, default 'raise'
        Configures error handling.

        * 'ignore' : will ignore KeyError if keys listed in meta are not
          always present.
        * 'raise' : will raise KeyError if keys listed in meta are not
          always present.
    sep : str, default '.'
        Nested records will generate names separated by sep.
        e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar.
    max_level : int, default None
        Max number of levels(depth of dict) to normalize.
        if None, normalizes all levels.

        .. versionadded:: 0.25.0

    Returns
    -------
    frame : DataFrame
    Normalize semi-structured JSON data into a flat table.

    Examples
    --------
    >>> data = [
    ...     {"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
    ...     {"name": {"given": "Mark", "family": "Regner"}},
    ...     {"id": 2, "name": "Faye Raker"},
    ... ]
    >>> pd.json_normalize(data)
        id name.first name.last name.given name.family        name
    0  1.0     Coleen      Volk        NaN         NaN         NaN
    1  NaN        NaN       NaN       Mark      Regner         NaN
    2  2.0        NaN       NaN        NaN         NaN  Faye Raker

    >>> data = [
    ...     {
    ...         "id": 1,
    ...         "name": "Cole Volk",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ...     {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
    ...     {
    ...         "id": 2,
    ...         "name": "Faye Raker",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ... ]
    >>> pd.json_normalize(data, max_level=0)
        id        name                        fitness
    0  1.0   Cole Volk  {'height': 130, 'weight': 60}
    1  NaN    Mark Reg  {'height': 130, 'weight': 60}
    2  2.0  Faye Raker  {'height': 130, 'weight': 60}

    Normalizes nested data up to level 1.

    >>> data = [
    ...     {
    ...         "id": 1,
    ...         "name": "Cole Volk",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ...     {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
    ...     {
    ...         "id": 2,
    ...         "name": "Faye Raker",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ... ]
    >>> pd.json_normalize(data, max_level=1)
        id        name  fitness.height  fitness.weight
    0  1.0   Cole Volk             130              60
    1  NaN    Mark Reg             130              60
    2  2.0  Faye Raker             130              60

    >>> data = [
    ...     {
    ...         "state": "Florida",
    ...         "shortname": "FL",
    ...         "info": {"governor": "Rick Scott"},
    ...         "counties": [
    ...             {"name": "Dade", "population": 12345},
    ...             {"name": "Broward", "population": 40000},
    ...             {"name": "Palm Beach", "population": 60000},
    ...         ],
    ...     },
    ...     {
    ...         "state": "Ohio",
    ...         "shortname": "OH",
    ...         "info": {"governor": "John Kasich"},
    ...         "counties": [
    ...             {"name": "Summit", "population": 1234},
    ...             {"name": "Cuyahoga", "population": 1337},
    ...         ],
    ...     },
    ... ]
    >>> result = pd.json_normalize(
    ...     data, "counties", ["state", "shortname", ["info", "governor"]]
    ... )
    >>> result
             name  population    state shortname info.governor
    0        Dade       12345   Florida    FL    Rick Scott
    1     Broward       40000   Florida    FL    Rick Scott
    2  Palm Beach       60000   Florida    FL    Rick Scott
    3      Summit        1234   Ohio       OH    John Kasich
    4    Cuyahoga        1337   Ohio       OH    John Kasich

    >>> data = {"A": [1, 2]}
    >>> pd.json_normalize(data, "A", record_prefix="Prefix.")
        Prefix.0
    0          1
    1          2

    Returns normalized data with columns prefixed with the given string.
    zdict[str, Any]z
list | strzScalar | Iterable)jsspecr   c             S  s2   | }t |tr&x|D ]}|| }qW n|| }|S )zInternal function to pull field)r   r8   )r?   r@   resultfieldr   r   r   _pull_field  s    

z$_json_normalize.<locals>._pull_fieldr8   c               sB    | |}t |ts>t|r$g }nt|  d| d| d|S )z
        Internal function to pull field for records, and similar to
        _pull_field, but require to return list. And will raise error
        if has non iterable value.
        z has non list value z
 for path z. Must be list or null.)r   r8   pdZisnull	TypeError)r?   r@   rA   )rC   r   r   _pull_records  s    


z&_json_normalize.<locals>._pull_recordsN)r   c             s  s    | ]}d d |  D V  qdS )c             S  s   g | ]}t |tqS r   )r   r   )r2   xr   r   r   r7     s    z-_json_normalize.<locals>.<genexpr>.<listcomp>N)values)r2   yr   r   r   	<genexpr>  s    z"_json_normalize.<locals>.<genexpr>)r   r   c             S  s    g | ]}t |tr|n|gqS r   )r   r8   )r2   mr   r   r   r7     s    z#_json_normalize.<locals>.<listcomp>c               s   g | ]}  |qS r   )join)r2   val)r   r   r   r7     s    r   c       
        sv  t | tr| g} t|dkrxj| D ]b}x8t D ]*\}}|d t|kr2||d ||< q2W ||d  |dd  ||d d q"W nx| D ]}||d }
fdd|D }t| xt D ]\}}|d t|kr|| }n`y|||d  }W nH tk
rP }	 z(dkr.tj}ntd|	 d	|	W d d }	~	X Y nX | | qW 	| qW d S )
Nr   r   r   )r   c               s(   g | ] }t |tr t| d n|qS ))r   r   )r   r   r$   )r2   r)r   r   r   r   r7     s   z?_json_normalize.<locals>._recursive_extract.<locals>.<listcomp>ignorez(Try running with errors='ignore' as key z is not always present)	r   r   r/   zipr%   KeyErrornpnanextend)
r*   pathZ	seen_metar   objrM   r0   ZrecsZmeta_vale)_metarC   rF   _recursive_extractr>   lengthsr   	meta_keys	meta_valsrecordsr   r   r   rY     s4    

*


z+_json_normalize.<locals>._recursive_extract)r   c               s     |  S )Nr   )rG   )r=   r   r   <lambda>      z!_json_normalize.<locals>.<lambda>)columnszConflicting metadata name z, need distinguishing prefix )Zdtype)r   )r   r8   r   r   r   r   r   NotImplementedErrorr5   anyr$   r   renamer!   
ValueErrorrR   arrayobjectrepeat)r*   r:   r;   r<   r=   r>   r   r   rA   r(   r)   r   )rX   rC   rF   rY   r>   rZ   r   r[   r\   r=   r]   r   r   _json_normalize   sX     



"'


rh   zpandas.io.json.json_normalizez1.0.0zpandas.json_normalize)r   r   r   N)r   )NNNNr9   r   N)
__future__r   collectionsr   r   r   typingr   r   r   numpyrR   Zpandas._libs.writersr   Zpandas._typingr	   Zpandas.util._decoratorsr
   ZpandasrD   r   r   r$   r.   r4   r5   rh   Zjson_normalizer   r   r   r   <module>   s8      N(5         