B
    ӻdV#                 @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlm	Z	 ddl
mZ dd	lmZ dd
lmZ ddlmZ edG dd de	ZdS )zEmbedding layer.    )backend)constraints)initializers)regularizers)base_layer_utils)Layer)tf_utils)embedding_ops)math_ops)keras_exportzkeras.layers.Embeddingc                   s^   e Zd ZdZd fdd	ZejdddZdd	d
Zejdd Z	dd Z
 fddZ  ZS )	Embeddinga  Turns positive integers (indexes) into dense vectors of fixed size.

  e.g. `[[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]`

  This layer can only be used as the first layer in a model.

  Example:

  >>> model = tf.keras.Sequential()
  >>> model.add(tf.keras.layers.Embedding(1000, 64, input_length=10))
  >>> # The model will take as input an integer matrix of size (batch,
  >>> # input_length), and the largest integer (i.e. word index) in the input
  >>> # should be no larger than 999 (vocabulary size).
  >>> # Now model.output_shape is (None, 10, 64), where `None` is the batch
  >>> # dimension.
  >>> input_array = np.random.randint(1000, size=(32, 10))
  >>> model.compile('rmsprop', 'mse')
  >>> output_array = model.predict(input_array)
  >>> print(output_array.shape)
  (32, 10, 64)

  Args:
    input_dim: Integer. Size of the vocabulary,
      i.e. maximum integer index + 1.
    output_dim: Integer. Dimension of the dense embedding.
    embeddings_initializer: Initializer for the `embeddings`
      matrix (see `keras.initializers`).
    embeddings_regularizer: Regularizer function applied to
      the `embeddings` matrix (see `keras.regularizers`).
    embeddings_constraint: Constraint function applied to
      the `embeddings` matrix (see `keras.constraints`).
    mask_zero: Boolean, whether or not the input value 0 is a special "padding"
      value that should be masked out.
      This is useful when using recurrent layers
      which may take variable length input.
      If this is `True`, then all subsequent layers
      in the model need to support masking or an exception will be raised.
      If mask_zero is set to True, as a consequence, index 0 cannot be
      used in the vocabulary (input_dim should equal size of
      vocabulary + 1).
    input_length: Length of input sequences, when it is constant.
      This argument is required if you are going to connect
      `Flatten` then `Dense` layers upstream
      (without it, the shape of the dense outputs cannot be computed).

  Input shape:
    2D tensor with shape: `(batch_size, input_length)`.

  Output shape:
    3D tensor with shape: `(batch_size, input_length, output_dim)`.

  **Note on variable placement:**
  By default, if a GPU is available, the embedding matrix will be placed on
  the GPU. This achieves the best performance, but it might cause issues:

  - You may be using an optimizer that does not support sparse GPU kernels.
  In this case you will see an error upon training your model.
  - Your embedding matrix may be too large to fit on your GPU. In this case
  you will see an Out Of Memory (OOM) error.

  In such cases, you should place the embedding matrix on the CPU memory.
  You can do so with a device scope, as such:

  ```python
  with tf.device('cpu:0'):
    embedding_layer = Embedding(...)
    embedding_layer.build()
  ```

  The pre-built `embedding_layer` instance can then be added to a `Sequential`
  model (e.g. `model.add(embedding_layer)`), called in a Functional model
  (e.g. `x = embedding_layer(x)`), or used in a subclassed model.
  uniformNFc	       
         s   d|	kr |r|f|	d< nd|	d< |dks0|dkr@t d||t s\d|	kr\t |	d< d|	d< tt| jf |	 || _	|| _
t|| _t|| _t|| _t|| _|| _|| _|| _d S )Ninput_shape)Nr   zZBoth `input_dim` and `output_dim` should be positive, found input_dim {} and output_dim {}dtypeFZautocast)
ValueErrorformatr   Zv2_dtype_behavior_enabledr   Zfloatxsuperr   __init__	input_dim
output_dimr   getembeddings_initializerr   embeddings_regularizeractivity_regularizerr   embeddings_constraint	mask_zeroZsupports_maskinginput_length)
selfr   r   r   r   r   r   r   r   kwargs)	__class__ [/var/www/html/venv/lib/python3.7/site-packages/tensorflow/python/keras/layers/embeddings.pyr   j   s*    

zEmbedding.__init__c             C   s0   | j | j| jf| jd| j| jdd| _d| _d S )N
embeddingsF)shapeZinitializernameZregularizer
constraintZexperimental_autocastT)Z
add_weightr   r   r   r   r   r"   Zbuilt)r   r   r    r    r!   build   s    

zEmbedding.buildc             C   s   | j s
d S t|dS )Nr   )r   r
   	not_equal)r   inputsmaskr    r    r!   compute_mask   s    zEmbedding.compute_maskc             C   s   | j d kr|| jf S t| j ttfr2t| j }n| j g}t|t|d krjtdt| j t|f nlxjtt	||dd  D ]P\}\}}|d k	r|d k	r||krtdt| j t|f q|d kr|||< qW |d ft| | jf S d S )N   z5"input_length" is %s, but received input has shape %sr   )
r   r   
isinstancelisttuplelenr   str	enumeratezip)r   r   Zin_lensis1s2r    r    r!   compute_output_shape   s"    
$zEmbedding.compute_output_shapec             C   sX   t |}|dkr&|dkr&t|d}t| j|}| jj| jj	krTt|| jj}|S )NZint32Zint64)
r   r   r
   castr	   Zembedding_lookup_v2r"   Z_dtype_policyZcompute_dtypeZvariable_dtype)r   r(   r   outr    r    r!   call   s    
zEmbedding.callc          	      sh   | j | jt| jt| jt| jt| j	| j
| jd}tt|  }tt| t|  S )N)r   r   r   r   r   r   r   r   )r   r   r   	serializer   r   r   r   r   r   r   r   r   r   
get_configdictr-   items)r   configZbase_config)r   r    r!   r;      s    




zEmbedding.get_config)r   NNNFN)N)N)__name__
__module____qualname____doc__r   r   Zshape_type_conversionr&   r*   r6   r9   r;   __classcell__r    r    )r   r!   r      s   J     !

r   N)rB   Ztensorflow.python.kerasr   r   r   r   Ztensorflow.python.keras.enginer   Z)tensorflow.python.keras.engine.base_layerr   Ztensorflow.python.keras.utilsr   Ztensorflow.python.opsr	   r
   Z tensorflow.python.util.tf_exportr   r   r    r    r    r!   <module>   s   